当我们用力将空气吹入气球时,气球便在气球内外压强差的作用下向外膨胀。而当我们吹好气球、将口扎紧时,气球内外压强的平衡使得气球总能保持圆滚滚的形状。在太空之中,太阳也用太阳风体吹起了这样一个“气球”,而星际物质的存在则使得这个“气球”拥有了特别的大小与形状,科学家们将这个气球称为“日球层”。而太阳风与星际物质相交会的地方,则被称为“日球层顶”。来自太阳系内部的飞行器,一旦越过日球层顶,就脱离了太阳风所能影响的空间范围,进入了“星际穿越”的新旅程中。
日球层大致结构示意图,图中Heliosphere为”日球层“,Heliopause为”日球层顶“,Termination Shock 为”终止激波“,Heliosheath为”日球鞘层“,Voyeger 1和Voyager 2分别为“旅行者1号”和“旅行者2号”。(图片来源:NASA)
太阳带领整个太阳系在银河系中运动,在与星际物质迎面相遇的那一侧,日球层顶距离太阳的距离约为一百多个天文单位(AU),也就是地球与太阳之间距离的100多倍(1天文单位=日地平均距离)。
作为人类目前飞的最远的探测器,美国于1977年发射的旅行者1号与旅行者2号,在2012年8月和2018年11月分别完成了日球层顶的穿越。
旅行者1号在地球轨道面(黄道面)以北的位置穿越日球层顶,穿越时与太阳的距离为121.7天文单位。旅行者2号则从黄道面以南穿越日球层顶,穿越时距离太阳119.0天文单位。由于旅行者2号上的等离子体谱仪(PLS)依然能够正常工作,并没有像旅行者1号的PLS一样在上世纪八十年代就宣告罢工,科学家们对旅行者2号的星际穿越能够带来的科学发现寄予了更大的期望。
本次公布的观测结果中,所发现的日球层顶附近的丰富而复杂的结构。(图片来源:文献[1])
北京时间2019年11月5日0点,《自然·天文》期刊在线发表了五篇论文,从不同的方面介绍了旅行者2号和旅行者1号在星际空间中看到的新鲜事。通过这两个探测器的观测,科学家们发现,太阳风和星际物质的相互作用使得日球层顶附近出现了丰富而复杂的相互作用结构。在回答原有问题的同时,这些探测结果也为未来的日球层边际探测提出了更多新的问题,有待我们研制发射更多的探测器去回答。 |